Nuprl Lemma : type-equating-some
∀T:Type. ∀P:T ⟶ ℙ.
  ∃T':Type
   ((T ⊆r T') ∧ (∀x,y:T.  (P[x] 
⇒ P[y] 
⇒ (x = y ∈ T'))) ∧ (∀x,y:T.  ((¬P[x]) 
⇒ (x = y ∈ T 
⇐⇒ x = y ∈ T'))))
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
rel_implies: R1 => R2
, 
infix_ap: x f y
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x.t[x]
, 
least-equiv: least-equiv(A;R)
, 
transitive-reflexive-closure: R^*
, 
or: P ∨ Q
, 
transitive-closure: TC(R)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
rel_path: rel_path(A;L;x;y)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
not: ¬A
Lemmas referenced : 
quotient_wf, 
least-equiv_wf, 
least-equiv-is-equiv, 
subtype_quotient, 
quotient-member-eq, 
implies-least-equiv, 
equal_functionality_wrt_subtype_rel2, 
equal_wf, 
member_wf, 
not_wf, 
subtype_rel_wf, 
all_wf, 
iff_wf, 
or_wf, 
and_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
productEquality, 
functionExtensionality, 
hypothesis, 
independent_isectElimination, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
pertypeElimination, 
productElimination, 
functionEquality, 
universeEquality, 
unionElimination, 
setElimination, 
rename, 
imageElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.
    \mexists{}T':Type
      ((T  \msubseteq{}r  T')  \mwedge{}  (\mforall{}x,y:T.    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  (x  =  y)))  \mwedge{}  (\mforall{}x,y:T.    ((\mneg{}P[x])  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x  =  y))))
Date html generated:
2018_05_21-PM-01_12_12
Last ObjectModification:
2018_05_03-PM-02_19_17
Theory : num_thy_1
Home
Index