Nuprl Lemma : int-subtype-int_mod
∀[n:ℤ]. (ℤ ⊆r ℤ_n)
Proof
Definitions occuring in Statement : 
int_mod: ℤ_n
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
int_mod: ℤ_n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_quotient, 
eqmod_wf, 
eqmod_equiv_rel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
axiomEquality
Latex:
\mforall{}[n:\mBbbZ{}].  (\mBbbZ{}  \msubseteq{}r  \mBbbZ{}\_n)
Date html generated:
2016_05_14-PM-09_25_59
Last ObjectModification:
2015_12_26-PM-08_02_39
Theory : num_thy_1
Home
Index