Nuprl Lemma : int-subtype-int_mod

[n:ℤ]. (ℤ ⊆r ℤ_n)


Proof




Definitions occuring in Statement :  int_mod: _n subtype_rel: A ⊆B uall: [x:A]. B[x] int:
Definitions unfolded in proof :  int_mod: _n uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  subtype_quotient eqmod_wf eqmod_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination axiomEquality

Latex:
\mforall{}[n:\mBbbZ{}].  (\mBbbZ{}  \msubseteq{}r  \mBbbZ{}\_n)



Date html generated: 2016_05_14-PM-09_25_59
Last ObjectModification: 2015_12_26-PM-08_02_39

Theory : num_thy_1


Home Index