Nuprl Lemma : modulus_wf_int_mod

[n:ℕ+]. ∀[x:ℤ_n].  (x mod n ∈ ℕn)


Proof




Definitions occuring in Statement :  int_mod: _n modulus: mod n int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_mod: _n nat_plus: + quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q lelt: i ≤ j < k int_seg: {i..j-} squash: T prop: uimplies: supposing a subtype_rel: A ⊆B nat: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_wf mod_bounds equal_wf squash_wf true_wf istype-universe modulus_functionality_wrt_eqmod modulus_wf nat_plus_inc_int_nzero subtype_rel_self iff_weakening_equal istype-le istype-less_than eqmod_wf istype-int int_mod_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule pertypeElimination promote_hyp productElimination equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt independent_pairFormation hypothesisEquality dependent_set_memberEquality_alt applyEquality lambdaEquality_alt imageElimination universeIsType instantiate universeEquality intEquality independent_isectElimination imageMemberEquality baseClosed independent_functionElimination productIsType equalityIstype dependent_functionElimination sqequalBase axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbZ{}\_n].    (x  mod  n  \mmember{}  \mBbbN{}n)



Date html generated: 2020_05_19-PM-10_02_24
Last ObjectModification: 2020_01_04-PM-08_03_28

Theory : num_thy_1


Home Index