Nuprl Lemma : modulus_functionality_wrt_eqmod
∀[m:ℕ+]. ∀[x,y:ℤ].  (x mod m) = (y mod m) ∈ ℤ supposing x ≡ y mod m
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
modulus: a mod n
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
Lemmas referenced : 
modulus-equal-iff-eqmod, 
eqmod_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
setElimination, 
rename, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbZ{}].    (x  mod  m)  =  (y  mod  m)  supposing  x  \mequiv{}  y  mod  m
Date html generated:
2016_05_14-PM-04_23_04
Last ObjectModification:
2015_12_26-PM-08_18_45
Theory : num_thy_1
Home
Index