Nuprl Lemma : modulus_functionality_wrt_eqmod

[m:ℕ+]. ∀[x,y:ℤ].  (x mod m) (y mod m) ∈ ℤ supposing x ≡ mod m


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m modulus: mod n nat_plus: + uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: nat_plus: +
Lemmas referenced :  modulus-equal-iff-eqmod eqmod_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis isectElimination setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbZ{}].    (x  mod  m)  =  (y  mod  m)  supposing  x  \mequiv{}  y  mod  m



Date html generated: 2016_05_14-PM-04_23_04
Last ObjectModification: 2015_12_26-PM-08_18_45

Theory : num_thy_1


Home Index