Step
*
2
1
of Lemma
search_succ
1. k : ℕ
2. P : ℕk + 1 ⟶ 𝔹
3. (∃i:ℕk + 1. (↑(P i)))
⇒ 0 < search(k + 1;P)
4. (∃i:ℕk + 1. (↑(P i)))
⇐ 0 < search(k + 1;P)
5. (↑(P (search(k + 1;P) - 1))) ∧ (∀j:ℕk + 1. ¬↑(P j) supposing j < search(k + 1;P) - 1) supposing 0 < search(k + 1;P)
6. ¬↑(P 0)
7. (∃i:ℕk. (↑((λi.(P (i + 1))) i)))
⇒ 0 < search(k;λi.(P (i + 1)))
8. (∃i:ℕk. (↑((λi.(P (i + 1))) i)))
⇐ 0 < search(k;λi.(P (i + 1)))
9. (↑((λi.(P (i + 1))) (search(k;λi.(P (i + 1))) - 1)))
∧ (∀j:ℕk. ¬↑((λi.(P (i + 1))) j) supposing j < search(k;λi.(P (i + 1))) - 1)
supposing 0 < search(k;λi.(P (i + 1)))
⊢ search(k + 1;P) = if 0 <z search(k;λi.(P (i + 1))) then search(k;λi.(P (i + 1))) + 1 else 0 fi ∈ ℤ
BY
{ (SplitOnConclITE THENA Auto) }
1
.....truecase.....
1. k : ℕ
2. P : ℕk + 1 ⟶ 𝔹
3. (∃i:ℕk + 1. (↑(P i)))
⇒ 0 < search(k + 1;P)
4. (∃i:ℕk + 1. (↑(P i)))
⇐ 0 < search(k + 1;P)
5. (↑(P (search(k + 1;P) - 1))) ∧ (∀j:ℕk + 1. ¬↑(P j) supposing j < search(k + 1;P) - 1) supposing 0 < search(k + 1;P)
6. ¬↑(P 0)
7. (∃i:ℕk. (↑((λi.(P (i + 1))) i)))
⇒ 0 < search(k;λi.(P (i + 1)))
8. (∃i:ℕk. (↑((λi.(P (i + 1))) i)))
⇐ 0 < search(k;λi.(P (i + 1)))
9. (↑((λi.(P (i + 1))) (search(k;λi.(P (i + 1))) - 1)))
∧ (∀j:ℕk. ¬↑((λi.(P (i + 1))) j) supposing j < search(k;λi.(P (i + 1))) - 1)
supposing 0 < search(k;λi.(P (i + 1)))
10. 0 < search(k;λi.(P (i + 1)))
⊢ search(k + 1;P) = (search(k;λi.(P (i + 1))) + 1) ∈ ℤ
2
.....falsecase.....
1. k : ℕ
2. P : ℕk + 1 ⟶ 𝔹
3. (∃i:ℕk + 1. (↑(P i)))
⇒ 0 < search(k + 1;P)
4. (∃i:ℕk + 1. (↑(P i)))
⇐ 0 < search(k + 1;P)
5. (↑(P (search(k + 1;P) - 1))) ∧ (∀j:ℕk + 1. ¬↑(P j) supposing j < search(k + 1;P) - 1) supposing 0 < search(k + 1;P)
6. ¬↑(P 0)
7. (∃i:ℕk. (↑((λi.(P (i + 1))) i)))
⇒ 0 < search(k;λi.(P (i + 1)))
8. (∃i:ℕk. (↑((λi.(P (i + 1))) i)))
⇐ 0 < search(k;λi.(P (i + 1)))
9. (↑((λi.(P (i + 1))) (search(k;λi.(P (i + 1))) - 1)))
∧ (∀j:ℕk. ¬↑((λi.(P (i + 1))) j) supposing j < search(k;λi.(P (i + 1))) - 1)
supposing 0 < search(k;λi.(P (i + 1)))
10. search(k;λi.(P (i + 1))) ≤ 0
⊢ search(k + 1;P) = 0 ∈ ℤ
Latex:
Latex:
1. k : \mBbbN{}
2. P : \mBbbN{}k + 1 {}\mrightarrow{} \mBbbB{}
3. (\mexists{}i:\mBbbN{}k + 1. (\muparrow{}(P i))) {}\mRightarrow{} 0 < search(k + 1;P)
4. (\mexists{}i:\mBbbN{}k + 1. (\muparrow{}(P i))) \mLeftarrow{}{} 0 < search(k + 1;P)
5. (\muparrow{}(P (search(k + 1;P) - 1))) \mwedge{} (\mforall{}j:\mBbbN{}k + 1. \mneg{}\muparrow{}(P j) supposing j < search(k + 1;P) - 1)
supposing 0 < search(k + 1;P)
6. \mneg{}\muparrow{}(P 0)
7. (\mexists{}i:\mBbbN{}k. (\muparrow{}((\mlambda{}i.(P (i + 1))) i))) {}\mRightarrow{} 0 < search(k;\mlambda{}i.(P (i + 1)))
8. (\mexists{}i:\mBbbN{}k. (\muparrow{}((\mlambda{}i.(P (i + 1))) i))) \mLeftarrow{}{} 0 < search(k;\mlambda{}i.(P (i + 1)))
9. (\muparrow{}((\mlambda{}i.(P (i + 1))) (search(k;\mlambda{}i.(P (i + 1))) - 1)))
\mwedge{} (\mforall{}j:\mBbbN{}k. \mneg{}\muparrow{}((\mlambda{}i.(P (i + 1))) j) supposing j < search(k;\mlambda{}i.(P (i + 1))) - 1)
supposing 0 < search(k;\mlambda{}i.(P (i + 1)))
\mvdash{} search(k + 1;P) = if 0 <z search(k;\mlambda{}i.(P (i + 1))) then search(k;\mlambda{}i.(P (i + 1))) + 1 else 0 fi
By
Latex:
(SplitOnConclITE THENA Auto)
Home
Index