Nuprl Lemma : search_succ
∀[k:ℕ]. ∀[P:ℕk + 1 ⟶ 𝔹].
  (search(k + 1;P) = if P 0 then 1 if 0 <z search(k;λi.(P (i + 1))) then search(k;λi.(P (i + 1))) + 1 else 0 fi  ∈ ℤ)
Proof
Definitions occuring in Statement : 
search: search(k;P), 
int_seg: {i..j-}, 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
iff: P ⇐⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
subtype_rel: A ⊆r B, 
less_than: a < b, 
squash: ↓T, 
subtract: n - m, 
guard: {T}, 
sq_type: SQType(T), 
assert: ↑b, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
int_seg_wf, 
bool_wf, 
nat_wf, 
false_wf, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
lelt_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
search_property, 
decidable__le, 
le_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
decidable__equal_int, 
search_wf, 
subtract_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
add-member-int_seg2, 
add-subtract-cancel, 
lt_int_wf, 
less_than_wf, 
le_int_wf, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
subtype_base_sq, 
int_subtype_base, 
add-commutes, 
add-associates, 
add-swap, 
int_seg_properties, 
assert_elim, 
bool_subtype_base, 
int_seg_subtype, 
all_wf, 
isect_wf, 
not_assert_elim, 
btrue_neq_bfalse, 
subtract-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityElimination, 
independent_functionElimination, 
functionExtensionality, 
imageElimination, 
instantiate, 
cumulativity, 
minusEquality, 
applyLambdaEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[P:\mBbbN{}k  +  1  {}\mrightarrow{}  \mBbbB{}].
    (search(k  +  1;P)
    =  if  P  0  then  1
        if  0  <z  search(k;\mlambda{}i.(P  (i  +  1)))  then  search(k;\mlambda{}i.(P  (i  +  1)))  +  1
        else  0
        fi  )
Date html generated:
2017_04_17-AM-09_52_59
Last ObjectModification:
2017_02_27-PM-05_48_25
Theory : num_thy_1
Home
Index