Nuprl Lemma : search_wf

[k:ℕ]. ∀[P:ℕk ⟶ 𝔹].  (search(k;P) ∈ ℕ1)


Proof




Definitions occuring in Statement :  search: search(k;P) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T search: search(k;P) nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m
Lemmas referenced :  primrec_wf int_seg_wf false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf lt_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot assert_of_lt_int less_than_wf eqtt_to_assert add-member-int_seg2 int_seg_properties decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma add-subtract-cancel nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality addEquality setElimination rename because_Cache hypothesis hypothesisEquality dependent_set_memberEquality independent_pairFormation sqequalRule lambdaFormation dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityElimination productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity independent_functionElimination applyEquality functionExtensionality axiomEquality functionEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[P:\mBbbN{}k  {}\mrightarrow{}  \mBbbB{}].    (search(k;P)  \mmember{}  \mBbbN{}k  +  1)



Date html generated: 2017_04_17-AM-09_52_19
Last ObjectModification: 2017_02_27-PM-05_46_42

Theory : num_thy_1


Home Index