Nuprl Lemma : add-ipoly1_wf
∀p,q:(ℤ × (ℤ List)) List.  (add-ipoly1(p;q) ∈ (ℤ × (ℤ List)) List)
Proof
Definitions occuring in Statement : 
add-ipoly1: add-ipoly1(p;q), 
list: T List, 
all: ∀x:A. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
add-ipoly1: add-ipoly1(p;q)
Lemmas referenced : 
add-ipoly-wf1
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}p,q:(\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List.    (add-ipoly1(p;q)  \mmember{}  (\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List)
 Date html generated: 
2017_09_29-PM-05_52_53
 Last ObjectModification: 
2017_05_11-PM-06_49_39
Theory : omega
Home
Index