Nuprl Lemma : add-ipoly1_wf

p,q:(ℤ × (ℤ List)) List.  (add-ipoly1(p;q) ∈ (ℤ × (ℤ List)) List)


Proof




Definitions occuring in Statement :  add-ipoly1: add-ipoly1(p;q) list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  add-ipoly1: add-ipoly1(p;q)
Lemmas referenced :  add-ipoly-wf1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}p,q:(\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List.    (add-ipoly1(p;q)  \mmember{}  (\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List)



Date html generated: 2017_09_29-PM-05_52_53
Last ObjectModification: 2017_05_11-PM-06_49_39

Theory : omega


Home Index