Nuprl Lemma : add-ipoly-wf1

p,q:(ℤ × (ℤ List)) List.  (add-ipoly(p;q) ∈ (ℤ × (ℤ List)) List)


Proof




Definitions occuring in Statement :  add-ipoly: add-ipoly(p;q) list: List all: x:A. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T imonomial-le: imonomial-le(m1;m2) uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: sq_type: SQType(T) less_than: a < b add-ipoly: add-ipoly(p;q) has-value: (a)↓ ifthenelse: if then else fi  btrue: tt bfalse: ff callbyvalueall: callbyvalueall has-valueall: has-valueall(a) bool: 𝔹 unit: Unit pi2: snd(t) exists: x:A. B[x] bnot: ¬bb assert: b
Lemmas referenced :  intlex_wf pi2_wf list_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-base nat_wf list-cases product_subtype_list spread_cons_lemma colength_wf_list sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel equal-wf-T-base decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf list_subtype_base product_subtype_base int_subtype_base subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base value-type-has-value list-value-type nil_wf null_nil_lemma cons_wf null_cons_lemma valueall-type-has-valueall list-valueall-type product-valueall-type int-valueall-type evalall-reduce bool_wf eqtt_to_assert int-value-type pi1_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality lambdaEquality hypothesis productElimination independent_pairEquality hypothesisEquality productEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache baseApply closedConclusion baseClosed applyEquality unionElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality instantiate cumulativity callbyvalueReduce equalityElimination int_eqEquality dependent_pairFormation

Latex:
\mforall{}p,q:(\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List.    (add-ipoly(p;q)  \mmember{}  (\mBbbZ{}  \mtimes{}  (\mBbbZ{}  List))  List)



Date html generated: 2017_09_29-PM-05_52_51
Last ObjectModification: 2017_05_11-PM-06_41_38

Theory : omega


Home Index