Nuprl Lemma : add-ipoly-wf1
∀p,q:(ℤ × (ℤ List)) List. (add-ipoly(p;q) ∈ (ℤ × (ℤ List)) List)
Proof
Definitions occuring in Statement :
add-ipoly: add-ipoly(p;q)
,
list: T List
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
imonomial-le: imonomial-le(m1;m2)
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
cons: [a / b]
,
colength: colength(L)
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
squash: ↓T
,
sq_stable: SqStable(P)
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
le: A ≤ B
,
not: ¬A
,
less_than': less_than'(a;b)
,
true: True
,
decidable: Dec(P)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
nil: []
,
it: ⋅
,
sq_type: SQType(T)
,
less_than: a < b
,
add-ipoly: add-ipoly(p;q)
,
has-value: (a)↓
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
callbyvalueall: callbyvalueall,
has-valueall: has-valueall(a)
,
bool: 𝔹
,
unit: Unit
,
pi2: snd(t)
,
exists: ∃x:A. B[x]
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
intlex_wf,
pi2_wf,
list_wf,
nat_properties,
less_than_transitivity1,
less_than_irreflexivity,
ge_wf,
less_than_wf,
equal-wf-base,
nat_wf,
list-cases,
product_subtype_list,
spread_cons_lemma,
colength_wf_list,
sq_stable__le,
le_antisymmetry_iff,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
equal-wf-T-base,
decidable__le,
false_wf,
not-le-2,
condition-implies-le,
minus-add,
minus-one-mul,
minus-one-mul-top,
add-commutes,
le_wf,
equal_wf,
list_subtype_base,
product_subtype_base,
int_subtype_base,
subtract_wf,
not-ge-2,
less-iff-le,
minus-minus,
add-swap,
subtype_base_sq,
set_subtype_base,
value-type-has-value,
list-value-type,
nil_wf,
null_nil_lemma,
cons_wf,
null_cons_lemma,
valueall-type-has-valueall,
list-valueall-type,
product-valueall-type,
int-valueall-type,
evalall-reduce,
bool_wf,
eqtt_to_assert,
int-value-type,
pi1_wf,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot
Rules used in proof :
cut,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalRule,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
lambdaEquality,
hypothesis,
productElimination,
independent_pairEquality,
hypothesisEquality,
productEquality,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
independent_functionElimination,
voidElimination,
dependent_functionElimination,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
unionElimination,
promote_hyp,
hypothesis_subsumption,
isect_memberEquality,
voidEquality,
applyLambdaEquality,
imageMemberEquality,
imageElimination,
addEquality,
dependent_set_memberEquality,
independent_pairFormation,
minusEquality,
instantiate,
cumulativity,
callbyvalueReduce,
equalityElimination,
int_eqEquality,
dependent_pairFormation
Latex:
\mforall{}p,q:(\mBbbZ{} \mtimes{} (\mBbbZ{} List)) List. (add-ipoly(p;q) \mmember{} (\mBbbZ{} \mtimes{} (\mBbbZ{} List)) List)
Date html generated:
2017_09_29-PM-05_52_51
Last ObjectModification:
2017_05_11-PM-06_41_38
Theory : omega
Home
Index