Step
*
of Lemma
find-exact-eq-constraint_wf
∀[L:ℤ List]. find-exact-eq-constraint(L) ∈ x:{x:ℤ List| x = L ∈ (ℤ List)} × {i:ℕ+||L||| |L[i]| = 1 ∈ ℤ} ? supposing 0 <\000C ||L||
BY
{ TACTIC:(ProveWfLemma THEN MoveToConcl (-1) THEN GenConclTerm ⌜test-exact-eq-constraint(v)⌝⋅ THEN Auto) }
1
1. u : ℤ
2. v : ℤ List
3. x : ∃i:ℕ||v|| [(|v[i]| = 1 ∈ ℤ)]
4. test-exact-eq-constraint(v) = (inl x) ∈ (∃i:ℕ||v|| [(|v[i]| = 1 ∈ ℤ)]?)
5. 0 < ||[u / v]||
⊢ x + 1 ∈ {i:ℕ+||v|| + 1| |[u / v][i]| = 1 ∈ ℤ}
Latex:
Latex:
\mforall{}[L:\mBbbZ{} List]. find-exact-eq-constraint(L) \mmember{} x:\{x:\mBbbZ{} List| x = L\} \mtimes{} \{i:\mBbbN{}\msupplus{}||L||| |L[i]| = 1\} ? supposin\000Cg 0 < ||L||
By
Latex:
TACTIC:(ProveWfLemma
THEN MoveToConcl (-1)
THEN GenConclTerm \mkleeneopen{}test-exact-eq-constraint(v)\mkleeneclose{}\mcdot{}
THEN Auto)
Home
Index