Nuprl Lemma : find-exact-eq-constraint_wf

[L:ℤ List]. find-exact-eq-constraint(L) ∈ x:{x:ℤ List| L ∈ (ℤ List)}  × {i:ℕ+||L||| |L[i]| 1 ∈ ℤsupposing 0 <\000C ||L||


Proof




Definitions occuring in Statement :  find-exact-eq-constraint: find-exact-eq-constraint(L) select: L[n] length: ||as|| list: List absval: |i| int_seg: {i..j-} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] unit: Unit member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] union: left right natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a find-exact-eq-constraint: find-exact-eq-constraint(L) all: x:A. B[x] or: P ∨ Q nil: [] it: less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] top: Top implies:  Q subtype_rel: A ⊆B prop: int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] uiff: uiff(P;Q) lelt: i ≤ j < k le: A ≤ B subtract: m decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q true: True
Lemmas referenced :  list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma istype-void test-exact-eq-constraint_wf cons_wf list_subtype_base int_subtype_base equal-wf-base list_wf int_seg_wf length_wf set_subtype_base lelt_wf unit_wf2 istype-less_than add-member-int_seg2 add-commutes add-associates add-swap zero-add istype-le subtract_wf select-cons-tl decidable__lt istype-false not-lt-2 condition-implies-le minus-add istype-int minus-one-mul minus-one-mul-top add_functionality_wrt_le add-zero le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule intEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination hypothesisEquality unionElimination imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption Error :isect_memberEquality_alt,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  Error :inlEquality_alt,  Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  because_Cache Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality independent_isectElimination setElimination rename Error :setIsType,  Error :universeIsType,  natural_numberEquality addEquality Error :lambdaEquality_alt,  Error :inrEquality_alt,  Error :productIsType,  Error :equalityIsType1,  equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality Error :isectIsTypeImplies,  independent_pairFormation minusEquality

Latex:
\mforall{}[L:\mBbbZ{}  List].  find-exact-eq-constraint(L)  \mmember{}  x:\{x:\mBbbZ{}  List|  x  =  L\}    \mtimes{}  \{i:\mBbbN{}\msupplus{}||L|||  |L[i]|  =  1\}  ?  supposin\000Cg  0  <  ||L||



Date html generated: 2019_06_20-PM-00_50_49
Last ObjectModification: 2018_10_18-PM-01_14_41

Theory : omega


Home Index