Nuprl Lemma : find-exact-eq-constraint_wf
∀[L:ℤ List]. find-exact-eq-constraint(L) ∈ x:{x:ℤ List| x = L ∈ (ℤ List)}  × {i:ℕ+||L||| |L[i]| = 1 ∈ ℤ} ? supposing 0 <\000C ||L||
Proof
Definitions occuring in Statement : 
find-exact-eq-constraint: find-exact-eq-constraint(L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
absval: |i|
, 
int_seg: {i..j-}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
union: left + right
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
find-exact-eq-constraint: find-exact-eq-constraint(L)
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
nil: []
, 
it: ⋅
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
cons: [a / b]
, 
top: Top
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
subtract: n - m
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
true: True
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
istype-void, 
test-exact-eq-constraint_wf, 
cons_wf, 
list_subtype_base, 
int_subtype_base, 
equal-wf-base, 
list_wf, 
int_seg_wf, 
length_wf, 
set_subtype_base, 
lelt_wf, 
unit_wf2, 
istype-less_than, 
add-member-int_seg2, 
add-commutes, 
add-associates, 
add-swap, 
zero-add, 
istype-le, 
subtract_wf, 
select-cons-tl, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
intEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
Error :inlEquality_alt, 
Error :dependent_pairEquality_alt, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
Error :setIsType, 
Error :universeIsType, 
natural_numberEquality, 
addEquality, 
Error :lambdaEquality_alt, 
Error :inrEquality_alt, 
Error :productIsType, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
Error :isectIsTypeImplies, 
independent_pairFormation, 
minusEquality
Latex:
\mforall{}[L:\mBbbZ{}  List].  find-exact-eq-constraint(L)  \mmember{}  x:\{x:\mBbbZ{}  List|  x  =  L\}    \mtimes{}  \{i:\mBbbN{}\msupplus{}||L|||  |L[i]|  =  1\}  ?  supposin\000Cg  0  <  ||L||
Date html generated:
2019_06_20-PM-00_50_49
Last ObjectModification:
2018_10_18-PM-01_14_41
Theory : omega
Home
Index