Nuprl Lemma : test-exact-eq-constraint_wf

[L:ℤ List]. (test-exact-eq-constraint(L) ∈ ∃i:ℕ||L|| [(|L[i]| 1 ∈ ℤ)]?)


Proof




Definitions occuring in Statement :  test-exact-eq-constraint: test-exact-eq-constraint(L) select: L[n] length: ||as|| list: List absval: |i| int_seg: {i..j-} uall: [x:A]. B[x] sq_exists: x:A [B[x]] unit: Unit member: t ∈ T union: left right natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  test-exact-eq-constraint: test-exact-eq-constraint(L) sq_exists: x:A [B[x]] uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T sq_stable: SqStable(P) subtract: m subtype_rel: A ⊆B exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k nat_plus: + true: True bfalse: ff exists: x:A. B[x] bnot: ¬bb assert: b nequal: a ≠ b ∈  decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than list-cases length_of_nil_lemma stuck-spread istype-base istype-void list_ind_nil_lemma it_wf int_seg_wf istype-int product_subtype_list colength-cons-not-zero istype-nat colength_wf_list istype-false istype-le list_wf subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base spread_cons_lemma sq_stable__le add-associates add-commutes add-swap zero-add length_of_cons_lemma list_ind_cons_lemma absval_wf eq_int_wf eqtt_to_assert assert_of_eq_int add_nat_plus length_wf_nat length_wf select-cons-hd list_subtype_base lelt_wf unit_wf2 eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot neg_assert_of_eq_int add-member-int_seg2 decidable__le subtract_wf not-le-2 not-equal-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add_functionality_wrt_le add-zero le-add-cancel2 select-cons-tl decidable__lt not-lt-2 le-add-cancel le_weakening2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :universeIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  intEquality unionElimination baseClosed Error :isect_memberEquality_alt,  Error :inrEquality_alt,  closedConclusion Error :setIsType,  Error :equalityIsType4,  promote_hyp hypothesis_subsumption productElimination Error :equalityIsType1,  Error :dependent_set_memberEquality_alt,  because_Cache independent_pairFormation instantiate cumulativity imageElimination imageMemberEquality applyLambdaEquality applyEquality minusEquality baseApply equalityElimination Error :inlEquality_alt,  Error :productIsType,  addEquality Error :dependent_pairFormation_alt

Latex:
\mforall{}[L:\mBbbZ{}  List].  (test-exact-eq-constraint(L)  \mmember{}  \mexists{}i:\mBbbN{}||L||  [(|L[i]|  =  1)]?)



Date html generated: 2019_06_20-PM-00_50_45
Last ObjectModification: 2018_10_18-PM-01_14_44

Theory : omega


Home Index