Step
*
of Lemma
gcd-list-property
∀L:ℤ List+
((∃R:ℤ List. (L = gcd-list(L) * R ∈ (ℤ List))) ∧ (∃S:ℤ List. ((||S|| = ||L|| ∈ ℤ) ∧ (gcd-list(L) = S ⋅ L ∈ ℤ))))
BY
{ ((D 0 THENA Auto) THEN D 1 THEN D 1) }
1
1. [%1] : 0 < ||[]||
⊢ (∃R:ℤ List. ([] = gcd-list([]) * R ∈ (ℤ List))) ∧ (∃S:ℤ List. ((||S|| = ||[]|| ∈ ℤ) ∧ (gcd-list([]) = S ⋅ [] ∈ ℤ)))
2
1. u : ℤ
2. v : ℤ List
3. [%1] : 0 < ||[u / v]||
⊢ (∃R:ℤ List. ([u / v] = gcd-list([u / v]) * R ∈ (ℤ List)))
∧ (∃S:ℤ List. ((||S|| = ||[u / v]|| ∈ ℤ) ∧ (gcd-list([u / v]) = S ⋅ [u / v] ∈ ℤ)))
Latex:
Latex:
\mforall{}L:\mBbbZ{} List\msupplus{}
((\mexists{}R:\mBbbZ{} List. (L = gcd-list(L) * R)) \mwedge{} (\mexists{}S:\mBbbZ{} List. ((||S|| = ||L||) \mwedge{} (gcd-list(L) = S \mcdot{} L))))
By
Latex:
((D 0 THENA Auto) THEN D 1 THEN D 1)
Home
Index