Nuprl Lemma : gcd-list-property

L:ℤ List+
  ((∃R:ℤ List. (L gcd-list(L) R ∈ (ℤ List))) ∧ (∃S:ℤ List. ((||S|| ||L|| ∈ ℤ) ∧ (gcd-list(L) S ⋅ L ∈ ℤ))))


Proof




Definitions occuring in Statement :  int-vec-mul: as integer-dot-product: as ⋅ bs gcd-list: gcd-list(L) listp: List+ length: ||as|| list: List all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] listp: List+ member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q cons: [a b] less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q gcd-list: gcd-list(L) uimplies: supposing a top: Top subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] implies:  Q cand: c∧ B int-vec-mul: as true: True not: ¬A uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) ge: i ≥  subtract: m le: A ≤ B nat:
Lemmas referenced :  list-cases product_subtype_list listp_wf length_of_nil_lemma int-valueall-type tl_wf cons_wf hd_wf length_cons_ge_one subtype_rel_list top_wf better-gcd_wf reduce_hd_cons_lemma reduce_tl_cons_lemma length_of_cons_lemma eager-accum-list_accum list_induction all_wf exists_wf list_wf equal-wf-base list_subtype_base int_subtype_base list_accum_nil_lemma list_accum_cons_lemma nil_wf map_cons_lemma map_nil_lemma squash_wf true_wf mul-commutes one-mul length-singleton int_dot_cons_lemma int_dot_nil_left_lemma add-zero list_accum_wf better-gcd-properties equal_wf null_nil_lemma btrue_wf and_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse cons_one_one int-vec-mul_wf subtype_base_sq mul-swap non_neg_length length_wf_nat nat_wf subtype_rel-equal base_wf le_antisymmetry_iff length_wf condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel subtract_wf add-swap add-mul-special two-mul mul-distributes-right zero-mul nat_properties mul-distributes integer-dot-product_wf mul-associates
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut intEquality introduction extract_by_obid isectElimination hypothesis dependent_functionElimination hypothesisEquality unionElimination promote_hyp hypothesis_subsumption productElimination sqequalRule imageElimination voidElimination because_Cache independent_isectElimination isect_memberEquality voidEquality applyEquality lambdaEquality productEquality baseApply closedConclusion baseClosed independent_functionElimination independent_pairFormation dependent_pairFormation natural_numberEquality equalityTransitivity equalitySymmetry universeEquality imageMemberEquality multiplyEquality dependent_set_memberEquality applyLambdaEquality equalityUniverse levelHypothesis instantiate cumulativity sqequalIntensionalEquality addEquality minusEquality

Latex:
\mforall{}L:\mBbbZ{}  List\msupplus{}
    ((\mexists{}R:\mBbbZ{}  List.  (L  =  gcd-list(L)  *  R))  \mwedge{}  (\mexists{}S:\mBbbZ{}  List.  ((||S||  =  ||L||)  \mwedge{}  (gcd-list(L)  =  S  \mcdot{}  L))))



Date html generated: 2017_09_29-PM-05_51_49
Last ObjectModification: 2017_05_31-PM-03_09_49

Theory : omega


Home Index