Nuprl Lemma : gcd-list-property
∀L:ℤ List+
  ((∃R:ℤ List. (L = gcd-list(L) * R ∈ (ℤ List))) ∧ (∃S:ℤ List. ((||S|| = ||L|| ∈ ℤ) ∧ (gcd-list(L) = S ⋅ L ∈ ℤ))))
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as
, 
integer-dot-product: as ⋅ bs
, 
gcd-list: gcd-list(L)
, 
listp: A List+
, 
length: ||as||
, 
list: T List
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
listp: A List+
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
gcd-list: gcd-list(L)
, 
uimplies: b supposing a
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
int-vec-mul: a * as
, 
true: True
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
ge: i ≥ j 
, 
subtract: n - m
, 
le: A ≤ B
, 
nat: ℕ
Lemmas referenced : 
list-cases, 
product_subtype_list, 
listp_wf, 
length_of_nil_lemma, 
int-valueall-type, 
tl_wf, 
cons_wf, 
hd_wf, 
length_cons_ge_one, 
subtype_rel_list, 
top_wf, 
better-gcd_wf, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
length_of_cons_lemma, 
eager-accum-list_accum, 
list_induction, 
all_wf, 
exists_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
list_accum_nil_lemma, 
list_accum_cons_lemma, 
nil_wf, 
map_cons_lemma, 
map_nil_lemma, 
squash_wf, 
true_wf, 
mul-commutes, 
one-mul, 
length-singleton, 
int_dot_cons_lemma, 
int_dot_nil_left_lemma, 
add-zero, 
list_accum_wf, 
better-gcd-properties, 
equal_wf, 
null_nil_lemma, 
btrue_wf, 
and_wf, 
null_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
cons_one_one, 
int-vec-mul_wf, 
subtype_base_sq, 
mul-swap, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
subtype_rel-equal, 
base_wf, 
le_antisymmetry_iff, 
length_wf, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
subtract_wf, 
add-swap, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
nat_properties, 
mul-distributes, 
integer-dot-product_wf, 
mul-associates
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
intEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
sqequalRule, 
imageElimination, 
voidElimination, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
applyEquality, 
lambdaEquality, 
productEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation, 
dependent_pairFormation, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
multiplyEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
equalityUniverse, 
levelHypothesis, 
instantiate, 
cumulativity, 
sqequalIntensionalEquality, 
addEquality, 
minusEquality
Latex:
\mforall{}L:\mBbbZ{}  List\msupplus{}
    ((\mexists{}R:\mBbbZ{}  List.  (L  =  gcd-list(L)  *  R))  \mwedge{}  (\mexists{}S:\mBbbZ{}  List.  ((||S||  =  ||L||)  \mwedge{}  (gcd-list(L)  =  S  \mcdot{}  L))))
Date html generated:
2017_09_29-PM-05_51_49
Last ObjectModification:
2017_05_31-PM-03_09_49
Theory : omega
Home
Index