Step
*
1
1
of Lemma
int_formula_prop_or_lemma
1. y : Top@i
2. x : Top@i
3. f : Top@i
⊢ int_formula_ind(x;
intformless(left,right)
⇒ int_term_value(f;left) < int_term_value(f;right);
intformle(left,right)
⇒ int_term_value(f;left) ≤ int_term_value(f;right);
intformeq(left,right)
⇒ int_term_value(f;left) = int_term_value(f;right) ∈ ℤ;
intformand(left,right)
⇒ rec1,rec2.rec1 ∧ rec2;
intformor(left,right)
⇒ rec3,rec4.rec3 ∨ rec4;
intformimplies(left,right)
⇒ rec5,rec6.rec5
⇒ rec6;
intformnot(form)
⇒ rec7.¬rec7)
∨ int_formula_ind(y;
intformless(left,right)
⇒ int_term_value(f;left) < int_term_value(f;right);
intformle(left,right)
⇒ int_term_value(f;left) ≤ int_term_value(f;right);
intformeq(left,right)
⇒ int_term_value(f;left) = int_term_value(f;right) ∈ ℤ;
intformand(left,right)
⇒ rec1,rec2.rec1 ∧ rec2;
intformor(left,right)
⇒ rec3,rec4.rec3 ∨ rec4;
intformimplies(left,right)
⇒ rec5,rec6.rec5
⇒ rec6;
intformnot(form)
⇒ rec7.¬rec7) ~ int_formula_prop(f;x) ∨ int_formula_prop(f;y)
BY
{ Try (RW (AddrC [2] (UnfoldC `int_formula_prop`)) 0)⋅ }
1
1. y : Top@i
2. x : Top@i
3. f : Top@i
⊢ int_formula_ind(x;
intformless(left,right)
⇒ int_term_value(f;left) < int_term_value(f;right);
intformle(left,right)
⇒ int_term_value(f;left) ≤ int_term_value(f;right);
intformeq(left,right)
⇒ int_term_value(f;left) = int_term_value(f;right) ∈ ℤ;
intformand(left,right)
⇒ rec1,rec2.rec1 ∧ rec2;
intformor(left,right)
⇒ rec3,rec4.rec3 ∨ rec4;
intformimplies(left,right)
⇒ rec5,rec6.rec5
⇒ rec6;
intformnot(form)
⇒ rec7.¬rec7)
∨ int_formula_ind(y;
intformless(left,right)
⇒ int_term_value(f;left) < int_term_value(f;right);
intformle(left,right)
⇒ int_term_value(f;left) ≤ int_term_value(f;right);
intformeq(left,right)
⇒ int_term_value(f;left) = int_term_value(f;right) ∈ ℤ;
intformand(left,right)
⇒ rec1,rec2.rec1 ∧ rec2;
intformor(left,right)
⇒ rec3,rec4.rec3 ∨ rec4;
intformimplies(left,right)
⇒ rec5,rec6.rec5
⇒ rec6;
intformnot(form)
⇒ rec7.¬rec7) ~ int_formula_ind(x;
a,b.int_term_value(f;a) < int_term_value(f;b);
a,b.int_term_value(f;a) ≤ int_term_value(f;b);
a,b.int_term_value(f;a) = int_term_value(f;b) ∈ ℤ;
X,Y,PX,PY.PX ∧ PY;
X,Y,PX,PY.PX ∨ PY;
X,Y,PX,PY.PX
⇒ PY;
X,PX.¬PX)
∨ int_formula_ind(y;
a,b.int_term_value(f;a) < int_term_value(f;b);
a,b.int_term_value(f;a) ≤ int_term_value(f;b);
a,b.int_term_value(f;a) = int_term_value(f;b) ∈ ℤ;
X,Y,PX,PY.PX ∧ PY;
X,Y,PX,PY.PX ∨ PY;
X,Y,PX,PY.PX
⇒ PY;
X,PX.¬PX)
Latex:
Latex:
1. y : Top@i
2. x : Top@i
3. f : Top@i
\mvdash{} int\_formula\_ind(x;
intformless(left,right){}\mRightarrow{} int\_term\_value(f;left) < int\_term\_value(f;right);
intformle(left,right){}\mRightarrow{} int\_term\_value(f;left) \mleq{} int\_term\_value(f;right);
intformeq(left,right){}\mRightarrow{} int\_term\_value(f;left) = int\_term\_value(f;right);
intformand(left,right){}\mRightarrow{} rec1,rec2.rec1 \mwedge{} rec2;
intformor(left,right){}\mRightarrow{} rec3,rec4.rec3 \mvee{} rec4;
intformimplies(left,right){}\mRightarrow{} rec5,rec6.rec5 {}\mRightarrow{} rec6;
intformnot(form){}\mRightarrow{} rec7.\mneg{}rec7)
\mvee{} int\_formula\_ind(y;
intformless(left,right){}\mRightarrow{} int\_term\_value(f;left) < int\_term\_value(f;right);
intformle(left,right){}\mRightarrow{} int\_term\_value(f;left) \mleq{} int\_term\_value(f;right);
intformeq(left,right){}\mRightarrow{} int\_term\_value(f;left) = int\_term\_value(f;right);
intformand(left,right){}\mRightarrow{} rec1,rec2.rec1 \mwedge{} rec2;
intformor(left,right){}\mRightarrow{} rec3,rec4.rec3 \mvee{} rec4;
intformimplies(left,right){}\mRightarrow{} rec5,rec6.rec5 {}\mRightarrow{} rec6;
intformnot(form){}\mRightarrow{} rec7.\mneg{}rec7) \msim{} int\_formula\_prop(f;x) \mvee{} int\_formula\_prop(f;y)
By
Latex:
Try (RW (AddrC [2] (UnfoldC `int\_formula\_prop`)) 0)\mcdot{}
Home
Index