Step
*
of Lemma
length-list-delete
∀[T:Type]. ∀[as:T List]. ∀[i:ℕ]. ||as\i|| = (||as|| - 1) ∈ ℤ supposing i < ||as||
BY
{ (InductionOnList THEN (UnivCD THENA Auto) THEN RecUnfold `list-delete` 0 THEN Reduce 0 THEN Auto) }
1
1. T : Type
2. i : ℕ
3. i < ||[]||
⊢ 0 = (-1) ∈ ℤ
2
1. T : Type
2. u : T
3. v : T List
4. ∀[i:ℕ]. ||v\i|| = (||v|| - 1) ∈ ℤ supposing i < ||v||
5. i : ℕ
6. i < ||[u / v]||
⊢ ||if (i) < (1) then v else [u / v\i - 1]|| = ((||v|| + 1) - 1) ∈ ℤ
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[as:T List]. \mforall{}[i:\mBbbN{}]. ||as\mbackslash{}i|| = (||as|| - 1) supposing i < ||as||
By
Latex:
(InductionOnList THEN (UnivCD THENA Auto) THEN RecUnfold `list-delete` 0 THEN Reduce 0 THEN Auto)
Home
Index