Step * 1 1 1 2 1 2 2 1 1 of Lemma satisfies-negate-poly-constraint


1. eqs iPolynomial() List
2. ineqs iPolynomial() List
3. : ℤ ⟶ ℤ
4. (∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ)
5. ¬(∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. ¬((∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ) ∧ (∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p))))
⊢ (∃ineq∈ineqs. 0 ≤ int_term_value(f;ipolynomial-term(minus-poly(add-ipoly(ineq;const-poly(1))))))
BY
Assert ⌜Dec((∃ineq∈ineqs. 0 ≤ int_term_value(f;ipolynomial-term(minus-poly(add-ipoly(ineq;const-poly(1)))))))⌝⋅ }

1
.....assertion..... 
1. eqs iPolynomial() List
2. ineqs iPolynomial() List
3. : ℤ ⟶ ℤ
4. (∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ)
5. ¬(∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. ¬((∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ) ∧ (∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p))))
⊢ Dec((∃ineq∈ineqs. 0 ≤ int_term_value(f;ipolynomial-term(minus-poly(add-ipoly(ineq;const-poly(1)))))))

2
1. eqs iPolynomial() List
2. ineqs iPolynomial() List
3. : ℤ ⟶ ℤ
4. (∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ)
5. ¬(∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p)))
6. ¬((∀p∈eqs.int_term_value(f;ipolynomial-term(p)) 0 ∈ ℤ) ∧ (∀p∈ineqs.0 ≤ int_term_value(f;ipolynomial-term(p))))
7. Dec((∃ineq∈ineqs. 0 ≤ int_term_value(f;ipolynomial-term(minus-poly(add-ipoly(ineq;const-poly(1)))))))
⊢ (∃ineq∈ineqs. 0 ≤ int_term_value(f;ipolynomial-term(minus-poly(add-ipoly(ineq;const-poly(1))))))


Latex:


Latex:

1.  eqs  :  iPolynomial()  List
2.  ineqs  :  iPolynomial()  List
3.  f  :  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
4.  (\mforall{}p\mmember{}eqs.int\_term\_value(f;ipolynomial-term(p))  =  0)
5.  \mneg{}(\mforall{}p\mmember{}ineqs.0  \mleq{}  int\_term\_value(f;ipolynomial-term(p)))
6.  \mneg{}((\mforall{}p\mmember{}eqs.int\_term\_value(f;ipolynomial-term(p))  =  0)
\mwedge{}  (\mforall{}p\mmember{}ineqs.0  \mleq{}  int\_term\_value(f;ipolynomial-term(p))))
\mvdash{}  (\mexists{}ineq\mmember{}ineqs.  0  \mleq{}  int\_term\_value(f;ipolynomial-term(minus-poly(add-ipoly(ineq;const-poly(1))))))


By


Latex:
Assert 
...\mcdot{}




Home Index