Step * 6 1 2 1 of Lemma satisfies_int_formula_dnf


1. left int_formula()
2. right int_formula()
3. ∀f:ℤ ⟶ ℤ(int_formula_prop(f;left) ⇐⇒ (∃X∈int_formula_dnf(left). satisfies-poly-constraints(f;X)))
4. ∀f:ℤ ⟶ ℤ(int_formula_prop(f;right) ⇐⇒ (∃X∈int_formula_dnf(right). satisfies-poly-constraints(f;X)))
5. : ℤ ⟶ ℤ
6. polynomial-constraints() List
7. int_formula_dnf(left) v ∈ (polynomial-constraints() List)
8. v1 polynomial-constraints() List
9. int_formula_dnf(right) v1 ∈ (polynomial-constraints() List)
10. (∀X∈v.¬satisfies-poly-constraints(f;X))
11. (∃X∈v. satisfies-poly-constraints(f;X))
⊢ (∃X∈v1. satisfies-poly-constraints(f;X))
BY
(D -1 THEN With ⌜i⌝ (D (-3))⋅ THEN Auto) }


Latex:


Latex:

1.  left  :  int\_formula()
2.  right  :  int\_formula()
3.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
          (int\_formula\_prop(f;left)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}int\_formula\_dnf(left).  satisfies-poly-constraints(f;X)))
4.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
          (int\_formula\_prop(f;right)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}X\mmember{}int\_formula\_dnf(right).  satisfies-poly-constraints(f;X)))
5.  f  :  \mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}
6.  v  :  polynomial-constraints()  List
7.  int\_formula\_dnf(left)  =  v
8.  v1  :  polynomial-constraints()  List
9.  int\_formula\_dnf(right)  =  v1
10.  (\mforall{}X\mmember{}v.\mneg{}satisfies-poly-constraints(f;X))
11.  (\mexists{}X\mmember{}v.  satisfies-poly-constraints(f;X))
\mvdash{}  (\mexists{}X\mmember{}v1.  satisfies-poly-constraints(f;X))


By


Latex:
(D  -1  THEN  With  \mkleeneopen{}i\mkleeneclose{}  (D  (-3))\mcdot{}  THEN  Auto)




Home Index