Step
*
1
2
2
1
2
of Lemma
fixpoint-induction-bottom2
1. E : Type
2. S : Type
3. value-type(E)
4. mono(E)
5. ⊥ ∈ S
6. a : Base
7. b : Base
8. c : a = b ∈ (S ⟶ partial(E) × (S ⟶ S))
9. fst(a) ∈ S ⟶ partial(E)
10. fst(b) ∈ S ⟶ partial(E)
11. snd(a) ∈ S ⟶ S
12. snd(b) ∈ S ⟶ S
13. ((fst(b)) fix((snd(b))))↓
14. j : ℕ
15. ((fst(b)) (snd(b)^j ⊥))↓
⊢ ((fst(a)) fix((snd(a))))↓
BY
{ ((RevHypSubst' 8 (-1) THENA Auto)⋅
THEN ((Assert (fst(a)) (snd(a)^j ⊥) ≤ (fst(a)) fix((snd(a)))⋅
THENA (SqLeCD THEN Try (BLemma `fixpoint_ub`) THEN Auto)
)
THEN FLemma `has-value-monotonic` [-1]
THEN Auto)⋅
) }
Latex:
Latex:
1. E : Type
2. S : Type
3. value-type(E)
4. mono(E)
5. \mbot{} \mmember{} S
6. a : Base
7. b : Base
8. c : a = b
9. fst(a) \mmember{} S {}\mrightarrow{} partial(E)
10. fst(b) \mmember{} S {}\mrightarrow{} partial(E)
11. snd(a) \mmember{} S {}\mrightarrow{} S
12. snd(b) \mmember{} S {}\mrightarrow{} S
13. ((fst(b)) fix((snd(b))))\mdownarrow{}
14. j : \mBbbN{}
15. ((fst(b)) (snd(b)\^{}j \mbot{}))\mdownarrow{}
\mvdash{} ((fst(a)) fix((snd(a))))\mdownarrow{}
By
Latex:
((RevHypSubst' 8 (-1) THENA Auto)\mcdot{}
THEN ((Assert (fst(a)) (snd(a)\^{}j \mbot{}) \mleq{} (fst(a)) fix((snd(a)))\mcdot{}
THENA (SqLeCD THEN Try (BLemma `fixpoint\_ub`) THEN Auto)
)
THEN FLemma `has-value-monotonic` [-1]
THEN Auto)\mcdot{}
)
Home
Index