Step
*
of Lemma
apply-wf-per
∀[A:Type]. ∀[B:type-function{i:l}(A)]. ∀[f:per-function(A;a.B[a])]. ∀[a:A]. (f[a] ∈ B[a])
BY
{ (Intros
THEN InstLemma `per-function_wf`[⌜A⌝;⌜B⌝]⋅
THEN Auto
THEN Unhide
THEN PointwiseFunctionality 3
THEN Try ((EqCD THEN Auto)⋅)
THEN Try (Unhide)
THEN (PerHD (-3)⋅
THEN InstLemma `function-eq_wf_type_function` [⌜A⌝;⌜B⌝]⋅
THEN Auto
THEN (At ⌜Type⌝ (PointwiseFunctionality 7)⋅
THEN (Assert ⌜(B a2) = (B b1) ∈ Type⌝⋅ THEN Auto)⋅
THEN All (Unfolds ``so_apply function-eq member``)
THEN Try ((EqCD THEN Auto))
THEN Try ((InstHyp [⌜a2⌝;⌜a2⌝] 6⋅ THEN Auto)⋅)
THEN Try ((InstHyp [⌜b1⌝;⌜b1⌝] 6⋅ THEN Auto)⋅)
THEN Try ((InstHyp [⌜a2⌝;⌜b1⌝] 6⋅ THEN Auto)⋅))⋅)⋅) }
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B:type-function\{i:l\}(A)]. \mforall{}[f:per-function(A;a.B[a])]. \mforall{}[a:A]. (f[a] \mmember{} B[a])
By
Latex:
(Intros
THEN InstLemma `per-function\_wf`[\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{}]\mcdot{}
THEN Auto
THEN Unhide
THEN PointwiseFunctionality 3
THEN Try ((EqCD THEN Auto)\mcdot{})
THEN Try (Unhide)
THEN (PerHD (-3)\mcdot{}
THEN InstLemma `function-eq\_wf\_type\_function` [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{}]\mcdot{}
THEN Auto
THEN (At \mkleeneopen{}Type\mkleeneclose{} (PointwiseFunctionality 7)\mcdot{}
THEN (Assert \mkleeneopen{}(B a2) = (B b1)\mkleeneclose{}\mcdot{} THEN Auto)\mcdot{}
THEN All (Unfolds ``so\_apply function-eq member``)
THEN Try ((EqCD THEN Auto))
THEN Try ((InstHyp [\mkleeneopen{}a2\mkleeneclose{};\mkleeneopen{}a2\mkleeneclose{}] 6\mcdot{} THEN Auto)\mcdot{})
THEN Try ((InstHyp [\mkleeneopen{}b1\mkleeneclose{};\mkleeneopen{}b1\mkleeneclose{}] 6\mcdot{} THEN Auto)\mcdot{})
THEN Try ((InstHyp [\mkleeneopen{}a2\mkleeneclose{};\mkleeneopen{}b1\mkleeneclose{}] 6\mcdot{} THEN Auto)\mcdot{}))\mcdot{})\mcdot{})
Home
Index