Nuprl Lemma : apply-wf-per

[A:Type]. ∀[B:type-function{i:l}(A)]. ∀[f:per-function(A;a.B[a])]. ∀[a:A].  (f[a] ∈ B[a])


Proof




Definitions occuring in Statement :  type-function: type-function{i:l}(A) per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-function: per-function(A;a.B[a]) all: x:A. B[x] and: P ∧ Q prop: so_apply: x[s] function-eq: function-eq(A;a.B[a];f;g) squash: T uimplies: supposing a subtype_rel: A ⊆B true: True
Lemmas referenced :  per-function_wf function-eq_wf_type_function and_wf equal_wf apply_wf_type-function member_wf type-function_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality pointwiseFunctionality sqequalRule pertypeElimination dependent_functionElimination equalitySymmetry dependent_set_memberEquality hypothesis independent_pairFormation equalityTransitivity applyLambdaEquality setElimination rename productElimination applyEquality lambdaEquality imageElimination independent_isectElimination imageMemberEquality baseClosed natural_numberEquality universeEquality hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].  \mforall{}[f:per-function(A;a.B[a])].  \mforall{}[a:A].    (f[a]  \mmember{}  B[a])



Date html generated: 2017_04_14-AM-07_29_17
Last ObjectModification: 2017_02_27-PM-02_57_34

Theory : per!type


Home Index