Nuprl Lemma : apply-wf-per
∀[A:Type]. ∀[B:type-function{i:l}(A)]. ∀[f:per-function(A;a.B[a])]. ∀[a:A].  (f[a] ∈ B[a])
Proof
Definitions occuring in Statement : 
type-function: type-function{i:l}(A)
, 
per-function: per-function(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-function: per-function(A;a.B[a])
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
per-function_wf, 
function-eq_wf_type_function, 
and_wf, 
equal_wf, 
apply_wf_type-function, 
member_wf, 
type-function_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
pointwiseFunctionality, 
sqequalRule, 
pertypeElimination, 
dependent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
equalityTransitivity, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
universeEquality, 
hyp_replacement
Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].  \mforall{}[f:per-function(A;a.B[a])].  \mforall{}[a:A].    (f[a]  \mmember{}  B[a])
Date html generated:
2017_04_14-AM-07_29_17
Last ObjectModification:
2017_02_27-PM-02_57_34
Theory : per!type
Home
Index