Nuprl Lemma : function-eq_wf_type_function
∀A:Type. ∀B:type-function{i:l}(A). ∀f,g:Base.  (function-eq(A;a.B[a];f;g) ∈ Type)
Proof
Definitions occuring in Statement : 
type-function: type-function{i:l}(A)
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
type-function_wf, 
equal-wf-base, 
isect_wf, 
base_wf, 
uall_wf, 
per-function-type-apply
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}B:type-function\{i:l\}(A).  \mforall{}f,g:Base.    (function-eq(A;a.B[a];f;g)  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_53_48
Last ObjectModification:
2016_01_14-PM-07_15_40
Theory : per!type
Home
Index