Nuprl Lemma : function-eq_wf_type_function

A:Type. ∀B:type-function{i:l}(A). ∀f,g:Base.  (function-eq(A;a.B[a];f;g) ∈ Type)


Proof




Definitions occuring in Statement :  type-function: type-function{i:l}(A) function-eq: function-eq(A;a.B[a];f;g) so_apply: x[s] all: x:A. B[x] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T function-eq: function-eq(A;a.B[a];f;g) uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s]
Lemmas referenced :  type-function_wf equal-wf-base isect_wf base_wf uall_wf per-function-type-apply
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed universeEquality

Latex:
\mforall{}A:Type.  \mforall{}B:type-function\{i:l\}(A).  \mforall{}f,g:Base.    (function-eq(A;a.B[a];f;g)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_53_48
Last ObjectModification: 2016_01_14-PM-07_15_40

Theory : per!type


Home Index