Nuprl Lemma : per-function-type-apply

[A:Type]. ∀[B:type-function{i:l}(A)]. ∀[a:A].  (B[a] ∈ Type)


Proof




Definitions occuring in Statement :  type-function: type-function{i:l}(A) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s]
Lemmas referenced :  apply_wf_type-function type-function_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].  \mforall{}[a:A].    (B[a]  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_53_47
Last ObjectModification: 2015_12_26-AM-10_40_59

Theory : per!type


Home Index