Nuprl Lemma : apply_wf_type-function

[A:Type]. ∀[a:A]. ∀[B:type-function{i:l}(A)].  (B a ∈ Type)


Proof




Definitions occuring in Statement :  type-function: type-function{i:l}(A) uall: [x:A]. B[x] member: t ∈ T apply: a universe: Type
Definitions unfolded in proof :  tf-apply: tf-apply(f;x) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  tf-apply_wf type-function_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[B:type-function\{i:l\}(A)].    (B  a  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_53_43
Last ObjectModification: 2015_12_26-AM-10_41_00

Theory : per!type


Home Index