Nuprl Lemma : tf-apply_wf

[A:Type]. ∀[a:A]. ∀[B:type-function{i:l}(A)].  (tf-apply(B;a) ∈ Type)


Proof




Definitions occuring in Statement :  tf-apply: tf-apply(f;x) type-function: type-function{i:l}(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] type-function: type-function{i:l}(A) tf-apply: tf-apply(f;x) member: t ∈ T per-function: per-function(A;a.B[a]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a base-type-family: base-type-family{i:l}(A;a.B[a]) implies:  Q guard: {T} squash: T prop: true: True
Lemmas referenced :  type-function_wf istype-universe function-eq-implies function-eq_wf member_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalHypSubstitution Error :universeIsType,  cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis universeEquality pointwiseFunctionality sqequalRule pertypeElimination instantiate cumulativity baseClosed independent_isectElimination Error :equalityIsType4,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry because_Cache independent_functionElimination applyEquality Error :lambdaEquality_alt,  imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[B:type-function\{i:l\}(A)].    (tf-apply(B;a)  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_30_01
Last ObjectModification: 2018_10_06-AM-10_08_45

Theory : per!type


Home Index