Nuprl Lemma : function-eq_wf
∀[A:Type]. ∀[B:Base].  ∀[f,g:Base].  (function-eq(A;a.B[a];f;g) ∈ Type) supposing base-type-family{i:l}(A;a.B[a])
Proof
Definitions occuring in Statement : 
function-eq: function-eq(A;a.B[a];f;g)
, 
base-type-family: base-type-family{i:l}(A;a.B[a])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
label: ...$L... t
Lemmas referenced : 
base-type-family_wf, 
equal-wf-base, 
isect_wf, 
base_wf, 
uall_wf, 
base-type-family-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality, 
isect_memberEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:Base].
    \mforall{}[f,g:Base].    (function-eq(A;a.B[a];f;g)  \mmember{}  Type)  supposing  base-type-family\{i:l\}(A;a.B[a])
Date html generated:
2016_05_13-PM-03_53_29
Last ObjectModification:
2016_01_14-PM-07_15_51
Theory : per!type
Home
Index