Nuprl Lemma : function-eq_wf

[A:Type]. ∀[B:Base].  ∀[f,g:Base].  (function-eq(A;a.B[a];f;g) ∈ Type) supposing base-type-family{i:l}(A;a.B[a])


Proof




Definitions occuring in Statement :  function-eq: function-eq(A;a.B[a];f;g) base-type-family: base-type-family{i:l}(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a function-eq: function-eq(A;a.B[a];f;g) so_lambda: λ2x.t[x] prop: all: x:A. B[x] so_apply: x[s] label: ...$L... t
Lemmas referenced :  base-type-family_wf equal-wf-base isect_wf base_wf uall_wf base-type-family-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed axiomEquality isect_memberEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:Base].
    \mforall{}[f,g:Base].    (function-eq(A;a.B[a];f;g)  \mmember{}  Type)  supposing  base-type-family\{i:l\}(A;a.B[a])



Date html generated: 2016_05_13-PM-03_53_29
Last ObjectModification: 2016_01_14-PM-07_15_51

Theory : per!type


Home Index