Nuprl Lemma : base-type-family-implies

[A:Type]. ∀[B:Base].  ∀a:A. (B[a] ∈ Type) supposing base-type-family{i:l}(A;a.B[a])


Proof




Definitions occuring in Statement :  base-type-family: base-type-family{i:l}(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] prop: so_lambda: λ2x.t[x] label: ...$L... t so_apply: x[s] base-type-family: base-type-family{i:l}(A;a.B[a]) squash: T true: True
Lemmas referenced :  true_wf squash_wf member_wf base_wf base-type-family_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation pointwiseFunctionality sqequalHypSubstitution hypothesis hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination thin axiomEquality equalityTransitivity equalitySymmetry because_Cache lemma_by_obid isectElimination cumulativity baseApply closedConclusion baseClosed isect_memberEquality universeEquality independent_isectElimination applyEquality instantiate imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:Base].    \mforall{}a:A.  (B[a]  \mmember{}  Type)  supposing  base-type-family\{i:l\}(A;a.B[a])



Date html generated: 2016_05_13-PM-03_53_28
Last ObjectModification: 2016_01_14-PM-07_15_55

Theory : per!type


Home Index