Nuprl Lemma : base-type-family-implies
∀[A:Type]. ∀[B:Base].  ∀a:A. (B[a] ∈ Type) supposing base-type-family{i:l}(A;a.B[a])
Proof
Definitions occuring in Statement : 
base-type-family: base-type-family{i:l}(A;a.B[a])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
so_apply: x[s]
, 
base-type-family: base-type-family{i:l}(A;a.B[a])
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
true_wf, 
squash_wf, 
member_wf, 
base_wf, 
base-type-family_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
pointwiseFunctionality, 
sqequalHypSubstitution, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberEquality, 
universeEquality, 
independent_isectElimination, 
applyEquality, 
instantiate, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:Base].    \mforall{}a:A.  (B[a]  \mmember{}  Type)  supposing  base-type-family\{i:l\}(A;a.B[a])
Date html generated:
2016_05_13-PM-03_53_28
Last ObjectModification:
2016_01_14-PM-07_15_55
Theory : per!type
Home
Index