Nuprl Lemma : base-type-family_wf

[A:Type]. ∀[B:Base].  (base-type-family{i:l}(A;a.B[a]) ∈ ℙ')


Proof




Definitions occuring in Statement :  base-type-family: base-type-family{i:l}(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T base-type-family: base-type-family{i:l}(A;a.B[a]) so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s]
Lemmas referenced :  equal-wf-base isect_wf base_wf uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesis lambdaEquality because_Cache cumulativity hypothesisEquality universeEquality baseApply closedConclusion baseClosed axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:Base].    (base-type-family\{i:l\}(A;a.B[a])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_13-PM-03_53_26
Last ObjectModification: 2016_01_14-PM-07_15_58

Theory : per!type


Home Index