Nuprl Lemma : function-eq-implies
∀[A:Type]. ∀[B:Base].
  ∀[f,g:Base].  (function-eq(A;a.B[a];f;g) ⇒ {∀[a:A]. ((f a) = (g a) ∈ B[a])}) 
  supposing base-type-family{i:l}(A;a.B[a])
Proof
Definitions occuring in Statement : 
function-eq: function-eq(A;a.B[a];f;g), 
base-type-family: base-type-family{i:l}(A;a.B[a]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
so_apply: x[s], 
implies: P ⇒ Q, 
apply: f a, 
base: Base, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
function-eq: function-eq(A;a.B[a];f;g), 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
so_apply: x[s], 
prop: ℙ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
true: True
Lemmas referenced : 
function-eq_wf, 
base_wf, 
base-type-family_wf, 
base-type-family-implies, 
and_wf, 
equal_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
pointwiseFunctionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
applyEquality, 
imageElimination, 
hyp_replacement, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:Base].
    \mforall{}[f,g:Base].    (function-eq(A;a.B[a];f;g)  {}\mRightarrow{}  \{\mforall{}[a:A].  ((f  a)  =  (g  a))\}) 
    supposing  base-type-family\{i:l\}(A;a.B[a])
Date html generated:
2017_04_14-AM-07_29_12
Last ObjectModification:
2017_02_27-PM-02_57_09
Theory : per!type
Home
Index