Nuprl Lemma : per-function_wf

[A:Type]. ∀[B:type-function{i:l}(A)].  (per-function(A;a.B[a]) ∈ Type)


Proof




Definitions occuring in Statement :  type-function: type-function{i:l}(A) per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] per-function: per-function(A;a.B[a]) implies:  Q
Lemmas referenced :  type-function_wf function-eq_wf_type_function function-eq-symmetry-type-function function-eq-transitivity-type-function
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache universeEquality dependent_functionElimination pertypeEquality independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:type-function\{i:l\}(A)].    (per-function(A;a.B[a])  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_53_55
Last ObjectModification: 2015_12_26-AM-10_40_54

Theory : per!type


Home Index