Nuprl Lemma : function-eq-transitivity-type-function

A:Type. ∀B:type-function{i:l}(A). ∀f,g,h:Base.
  (function-eq(A;a.B[a];f;g)  function-eq(A;a.B[a];g;h)  function-eq(A;a.B[a];f;h))


Proof




Definitions occuring in Statement :  type-function: type-function{i:l}(A) function-eq: function-eq(A;a.B[a];f;g) so_apply: x[s] all: x:A. B[x] implies:  Q base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] base-type-family: base-type-family{i:l}(A;a.B[a]) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: so_apply: x[s] implies:  Q function-eq: function-eq(A;a.B[a];f;g) so_lambda: λ2x.t[x] squash: T label: ...$L... t true: True
Lemmas referenced :  type-function-eta function-eq_wf_type_function function-eq-transitivity type-function_wf function-eq_wf base_wf equal-wf-base apply_wf_type-function equal_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation pointwiseFunctionality cut isect_memberFormation introduction equalitySymmetry dependent_set_memberEquality hypothesis independent_pairFormation equalityTransitivity lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename productElimination setEquality sqequalRule isect_memberEquality axiomEquality because_Cache independent_isectElimination universeEquality baseApply closedConclusion baseClosed independent_functionElimination functionEquality imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}A:Type.  \mforall{}B:type-function\{i:l\}(A).  \mforall{}f,g,h:Base.
    (function-eq(A;a.B[a];f;g)  {}\mRightarrow{}  function-eq(A;a.B[a];g;h)  {}\mRightarrow{}  function-eq(A;a.B[a];f;h))



Date html generated: 2016_05_13-PM-03_53_53
Last ObjectModification: 2016_01_14-PM-07_15_42

Theory : per!type


Home Index