Nuprl Lemma : function-eq-transitivity-type-function
∀A:Type. ∀B:type-function{i:l}(A). ∀f,g,h:Base.
  (function-eq(A;a.B[a];f;g) 
⇒ function-eq(A;a.B[a];g;h) 
⇒ function-eq(A;a.B[a];f;h))
Proof
Definitions occuring in Statement : 
type-function: type-function{i:l}(A)
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
base-type-family: base-type-family{i:l}(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
label: ...$L... t
, 
true: True
Lemmas referenced : 
type-function-eta, 
function-eq_wf_type_function, 
function-eq-transitivity, 
type-function_wf, 
function-eq_wf, 
base_wf, 
equal-wf-base, 
apply_wf_type-function, 
equal_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
pointwiseFunctionality, 
cut, 
isect_memberFormation, 
introduction, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
equalityTransitivity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
setEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
independent_isectElimination, 
universeEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
functionEquality, 
imageElimination, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}A:Type.  \mforall{}B:type-function\{i:l\}(A).  \mforall{}f,g,h:Base.
    (function-eq(A;a.B[a];f;g)  {}\mRightarrow{}  function-eq(A;a.B[a];g;h)  {}\mRightarrow{}  function-eq(A;a.B[a];f;h))
Date html generated:
2016_05_13-PM-03_53_53
Last ObjectModification:
2016_01_14-PM-07_15_42
Theory : per!type
Home
Index