Nuprl Lemma : type-function-eta
∀[A:Type]. ∀[B,C:type-function{i:l}(A)].
  ((B = C ∈ type-function{i:l}(A)) 
⇒ ((λx.(B x)) = (λx.(C x)) ∈ type-function{i:l}(A)))
Proof
Definitions occuring in Statement : 
type-function: type-function{i:l}(A)
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
type-function: type-function{i:l}(A)
, 
member: t ∈ T
, 
per-function: per-function(A;a.B[a])
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
uimplies: b supposing a
, 
tf-apply: tf-apply(f;x)
, 
squash: ↓T
, 
guard: {T}
, 
true: True
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
type-function_wf, 
per-function_wf_type, 
tf-apply_wf, 
subtype_rel_self, 
equal_functionality_wrt_subtype_rel2, 
equal_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
Error :equalityIsType1, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesis, 
universeEquality, 
pointwiseFunctionality, 
sqequalRule, 
pertypeMemberEquality, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
Error :lambdaEquality_alt, 
imageElimination, 
because_Cache, 
instantiate, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
Error :equalityIsType4, 
Error :isect_memberEquality_alt, 
axiomEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[A:Type].  \mforall{}[B,C:type-function\{i:l\}(A)].    ((B  =  C)  {}\mRightarrow{}  ((\mlambda{}x.(B  x))  =  (\mlambda{}x.(C  x))))
Date html generated:
2019_06_20-AM-11_30_02
Last ObjectModification:
2018_09_28-PM-11_21_21
Theory : per!type
Home
Index