Nuprl Lemma : per-function_wf_type
∀[A:Type]. (per-function(A;a.Type) ∈ 𝕌')
Proof
Definitions occuring in Statement : 
per-function: per-function(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
base-type-family: base-type-family{i:l}(A;a.B[a])
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
equal-wf-base, 
per-function_wf_base_family
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
baseClosed, 
independent_isectElimination, 
introduction, 
universeEquality, 
hypothesis, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache
Latex:
\mforall{}[A:Type].  (per-function(A;a.Type)  \mmember{}  \mBbbU{}')
Date html generated:
2016_05_13-PM-03_53_40
Last ObjectModification:
2016_01_14-PM-07_15_46
Theory : per!type
Home
Index