Nuprl Lemma : per-function_wf_type

[A:Type]. (per-function(A;a.Type) ∈ 𝕌')


Proof




Definitions occuring in Statement :  per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a base-type-family: base-type-family{i:l}(A;a.B[a]) prop:
Lemmas referenced :  base_wf equal-wf-base per-function_wf_base_family
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule baseClosed independent_isectElimination introduction universeEquality hypothesis isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[A:Type].  (per-function(A;a.Type)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_13-PM-03_53_40
Last ObjectModification: 2016_01_14-PM-07_15_46

Theory : per!type


Home Index