Step
*
of Lemma
per-and_wf
∀[A:Type]. ∀[B:Type supposing A].  (per-and(A;B) ∈ Type)
BY
{ TACTIC:(Auto THEN Unfold `per-and` 0 THEN InstLemma `per-product_wf` [⌜A⌝;⌜λ2x.B⌝]⋅ THEN Auto) }
1
.....wf..... 
1. A : Type
2. B : Type supposing A
⊢ λx.B ∈ per-function(A;a.Type)
Latex:
Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].    (per-and(A;B)  \mmember{}  Type)
By
Latex:
TACTIC:(Auto  THEN  Unfold  `per-and`  0  THEN  InstLemma  `per-product\_wf`  [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.B\mkleeneclose{}]\mcdot{}  THEN  Auto)
Home
Index