Step * of Lemma per-and_wf

[A:Type]. ∀[B:Type supposing A].  (per-and(A;B) ∈ Type)
BY
TACTIC:(Auto THEN Unfold `per-and` THEN InstLemma `per-product_wf` [⌜A⌝;⌜λ2x.B⌝]⋅ THEN Auto) }

1
.....wf..... 
1. Type
2. Type supposing A
⊢ λx.B ∈ per-function(A;a.Type)


Latex:


Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].    (per-and(A;B)  \mmember{}  Type)


By


Latex:
TACTIC:(Auto  THEN  Unfold  `per-and`  0  THEN  InstLemma  `per-product\_wf`  [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x.B\mkleeneclose{}]\mcdot{}  THEN  Auto)




Home Index