Nuprl Lemma : per-and_wf
∀[A:Type]. ∀[B:Type supposing A].  (per-and(A;B) ∈ Type)
Proof
Definitions occuring in Statement : 
per-and: per-and(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
per-and: per-and(A;B)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
per-type-family: per-type-family(B)
Lemmas referenced : 
per-type-family_wf, 
per-product_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
universeEquality, 
cumulativity, 
isectEquality, 
axiomEquality, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid
Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].    (per-and(A;B)  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_30_21
Last ObjectModification:
2018_08_22-PM-01_40_08
Theory : per!type
Home
Index