Nuprl Lemma : per-and_wf

[A:Type]. ∀[B:Type supposing A].  (per-and(A;B) ∈ Type)


Proof




Definitions occuring in Statement :  per-and: per-and(A;B) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] per-and: per-and(A;B) member: t ∈ T uall: [x:A]. B[x] per-type-family: per-type-family(B)
Lemmas referenced :  per-type-family_wf per-product_wf
Rules used in proof :  because_Cache isect_memberEquality universeEquality cumulativity isectEquality axiomEquality equalitySymmetry hypothesis equalityTransitivity sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid

Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].    (per-and(A;B)  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_30_21
Last ObjectModification: 2018_08_22-PM-01_40_08

Theory : per!type


Home Index