Nuprl Lemma : per-product_wf
∀[A:Type]. ∀[B:per-function(A;a.Type)].  (per-product(A;a.B[a]) ∈ Type)
Proof
Definitions occuring in Statement : 
per-product: per-product(A;a.B[a]), 
per-function: per-function(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
type-function: type-function{i:l}(A), 
prop: ℙ, 
uimplies: b supposing a, 
so_apply: x[s], 
uand: uand(A;B), 
has-value: (a)↓, 
and: P ∧ Q, 
top: Top, 
subtype_rel: A ⊆r B, 
per-product: per-product(A;a.B[a])
Lemmas referenced : 
per-function_wf_type, 
per-function-type-apply, 
uand_wf, 
equal-wf-base, 
has-value_wf_base, 
is-exception_wf, 
and_wf, 
equal_wf, 
apply_wf_type-function, 
top_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
isectEquality, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
rename, 
isaxiomCases, 
independent_isectElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
productElimination, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
lambdaEquality, 
hyp_replacement, 
promote_hyp, 
pertypeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;a.Type)].    (per-product(A;a.B[a])  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_30_13
Last ObjectModification:
2018_08_21-AM-00_45_56
Theory : per!type
Home
Index