Nuprl Lemma : per-product_wf

[A:Type]. ∀[B:per-function(A;a.Type)].  (per-product(A;a.B[a]) ∈ Type)


Proof




Definitions occuring in Statement :  per-product: per-product(A;a.B[a]) per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-function: type-function{i:l}(A) prop: uimplies: supposing a so_apply: x[s] uand: uand(A;B) has-value: (a)↓ and: P ∧ Q top: Top subtype_rel: A ⊆B per-product: per-product(A;a.B[a])
Lemmas referenced :  per-function_wf_type per-function-type-apply uand_wf equal-wf-base has-value_wf_base is-exception_wf and_wf equal_wf apply_wf_type-function top_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache sqequalRule hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality sqequalIntensionalEquality baseApply closedConclusion baseClosed isectEquality axiomSqleEquality divergentSqle sqleReflexivity rename isaxiomCases independent_isectElimination dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination productElimination axiomSqEquality isect_memberEquality voidElimination voidEquality applyEquality lambdaEquality hyp_replacement promote_hyp pertypeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:per-function(A;a.Type)].    (per-product(A;a.B[a])  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_30_13
Last ObjectModification: 2018_08_21-AM-00_45_56

Theory : per!type


Home Index