Nuprl Lemma : uand_wf
∀[A,B:Type].  (uand(A;B) ∈ Type)
Proof
Definitions occuring in Statement : 
uand: uand(A;B), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uand: uand(A;B), 
prop: ℙ, 
has-value: (a)↓, 
top: Top
Lemmas referenced : 
top_wf, 
is-exception_wf, 
has-value_wf_base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isectEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isaxiomCases, 
divergentSqle, 
baseClosed, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].    (uand(A;B)  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_53_20
Last ObjectModification:
2016_01_14-PM-07_16_00
Theory : per!type
Home
Index