Nuprl Lemma : uand_wf

[A,B:Type].  (uand(A;B) ∈ Type)


Proof




Definitions occuring in Statement :  uand: uand(A;B) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uand: uand(A;B) prop: has-value: (a)↓ top: Top
Lemmas referenced :  top_wf is-exception_wf has-value_wf_base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isectEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality isaxiomCases divergentSqle baseClosed sqequalAxiom isect_memberEquality because_Cache voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    (uand(A;B)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_53_20
Last ObjectModification: 2016_01_14-PM-07_16_00

Theory : per!type


Home Index