Nuprl Lemma : per-type-family_wf

[A:Type]. ∀[B:Type supposing A].  (per-type-family(B) ∈ per-function(A;a.Type))


Proof




Definitions occuring in Statement :  per-type-family: per-type-family(B) per-function: per-function(A;a.B[a]) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-type-family: per-type-family(B) uimplies: supposing a per-function: per-function(A;a.B[a]) function-eq: function-eq(A;a.B[a];f;g) prop: subtype_rel: A ⊆B
Lemmas referenced :  per-function_wf_type equal-wf-base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution hypothesis isectEquality cumulativity hypothesisEquality universeEquality introduction extract_by_obid isectElimination thin pointwiseFunctionalityForEquality equalityTransitivity equalitySymmetry pertypeMemberEquality sqequalRule baseApply closedConclusion baseClosed isect_memberEquality axiomEquality applyEquality because_Cache lambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].    (per-type-family(B)  \mmember{}  per-function(A;a.Type))



Date html generated: 2019_06_20-AM-11_29_59
Last ObjectModification: 2018_08_22-PM-01_38_05

Theory : per!type


Home Index