Nuprl Lemma : per-type-family_wf
∀[A:Type]. ∀[B:Type supposing A].  (per-type-family(B) ∈ per-function(A;a.Type))
Proof
Definitions occuring in Statement : 
per-type-family: per-type-family(B)
, 
per-function: per-function(A;a.B[a])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-type-family: per-type-family(B)
, 
uimplies: b supposing a
, 
per-function: per-function(A;a.B[a])
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
per-function_wf_type, 
equal-wf-base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
isectEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
pointwiseFunctionalityForEquality, 
equalityTransitivity, 
equalitySymmetry, 
pertypeMemberEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
applyEquality, 
because_Cache, 
lambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:Type  supposing  A].    (per-type-family(B)  \mmember{}  per-function(A;a.Type))
Date html generated:
2019_06_20-AM-11_29_59
Last ObjectModification:
2018_08_22-PM-01_38_05
Theory : per!type
Home
Index