Step
*
3
of Lemma
per-or-equal
1. A1 : Type
2. B1 : Type
3. A2 : Type
4. B2 : Type
5. B1 ≡ B2
6. A1 ≡ A2
7. x : Base
8. y : Base
9. ispair(x) ~ tt
10. ispair(y) ~ tt
11. (fst(x)) = (fst(y)) ∈ per-value()
12. (snd(x)) = (snd(y)) ∈ if fst(x) = Ax then A1 otherwise B1 supposing (fst(x)) = (fst(y)) ∈ per-value()
⊢ Ax ∈ (snd(x)) = (snd(y)) ∈ if fst(x) = Ax then A2 otherwise B2 supposing (fst(x)) = (fst(y)) ∈ per-value()
BY
{ ((InstLemma `per-value-property` [⌜fst(x)⌝]⋅ THENA Auto)
THEN DUand (-1)⋅
THEN (Try (Eliminate ⌜fst(y)⌝⋅) THEN Try (QuickAuto))⋅)⋅ }
1
1. x : Base
2. A1 : Type
3. B1 : Type
4. A2 : Type
5. B2 : Type
6. B1 ≡ B2
7. A1 ≡ A2
8. y : Base
9. ispair(x) ~ tt
10. ispair(y) ~ tt
11. (fst(x)) = (fst(y)) ∈ per-value()
12. (snd(x)) = (snd(y)) ∈ if fst(x) = Ax then A1 otherwise B1 supposing (fst(x)) = (fst(x)) ∈ per-value()
13. fst(x) ∈ Base
14. (fst(x))↓
⊢ Ax ∈ (snd(x)) = (snd(y)) ∈ if fst(x) = Ax then A2 otherwise B2 supposing (fst(x)) = (fst(x)) ∈ per-value()
Latex:
Latex:
1. A1 : Type
2. B1 : Type
3. A2 : Type
4. B2 : Type
5. B1 \mequiv{} B2
6. A1 \mequiv{} A2
7. x : Base
8. y : Base
9. ispair(x) \msim{} tt
10. ispair(y) \msim{} tt
11. (fst(x)) = (fst(y))
12. (snd(x)) = (snd(y)) supposing (fst(x)) = (fst(y))
\mvdash{} Ax \mmember{} (snd(x)) = (snd(y)) supposing (fst(x)) = (fst(y))
By
Latex:
((InstLemma `per-value-property` [\mkleeneopen{}fst(x)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN DUand (-1)\mcdot{}
THEN (Try (Eliminate \mkleeneopen{}fst(y)\mkleeneclose{}\mcdot{}) THEN Try (QuickAuto))\mcdot{})\mcdot{}
Home
Index