Nuprl Lemma : per-or-equal

[A1,B1,A2,B2:Type].  (per-or(A1;B1) per-or(A2;B2) ∈ Type) supposing (A1 ≡ A2 and B1 ≡ B2)


Proof




Definitions occuring in Statement :  per-or: per-or(A;B) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a per-or: per-or(A;B) per-exists: per-exists(A;a.B[a]) per-product: per-product(A;a.B[a]) uand: uand(A;B) has-value: (a)↓ top: Top prop: guard: {T} implies:  Q all: x:A. B[x] sq_type: SQType(T) subtype_rel: A ⊆B
Lemmas referenced :  has-value_wf_base is-exception_wf istype-top istype-void ext-eq_wf uand_wf equal-wf-base per-value-property top_wf per-value_subtype_base per-value_wf subtype_base_sq subtype_rel_weakening ext-eq_inversion equal_functionality_wrt_subtype_rel2 istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut pertypeEquality sqequalHypSubstitution isectElimination thin baseClosed sqequalRule axiomSqleEquality divergentSqle sqleReflexivity extract_by_obid hypothesis rename isaxiomCases hypothesisEquality axiomSqEquality because_Cache Error :inhabitedIsType,  Error :isect_memberEquality_alt,  voidElimination independent_isectElimination axiomEquality Error :universeIsType,  equalitySymmetry promote_hyp equalityTransitivity universeEquality sqequalIntensionalEquality baseApply closedConclusion isectEquality isect_memberFormation isect_memberEquality voidEquality independent_functionElimination dependent_functionElimination cumulativity instantiate applyEquality Error :lambdaFormation_alt,  Error :equalityIsType4

Latex:
\mforall{}[A1,B1,A2,B2:Type].    (per-or(A1;B1)  =  per-or(A2;B2))  supposing  (A1  \mequiv{}  A2  and  B1  \mequiv{}  B2)



Date html generated: 2019_06_20-AM-11_30_35
Last ObjectModification: 2018_10_06-AM-10_00_52

Theory : per!type


Home Index