Nuprl Lemma : per-or-equal
∀[A1,B1,A2,B2:Type].  (per-or(A1;B1) = per-or(A2;B2) ∈ Type) supposing (A1 ≡ A2 and B1 ≡ B2)
Proof
Definitions occuring in Statement : 
per-or: per-or(A;B)
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
per-or: per-or(A;B)
, 
per-exists: per-exists(A;a.B[a])
, 
per-product: per-product(A;a.B[a])
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
top: Top
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
istype-top, 
istype-void, 
ext-eq_wf, 
uand_wf, 
equal-wf-base, 
per-value-property, 
top_wf, 
per-value_subtype_base, 
per-value_wf, 
subtype_base_sq, 
subtype_rel_weakening, 
ext-eq_inversion, 
equal_functionality_wrt_subtype_rel2, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
pertypeEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
sqequalRule, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
extract_by_obid, 
hypothesis, 
rename, 
isaxiomCases, 
hypothesisEquality, 
axiomSqEquality, 
because_Cache, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
axiomEquality, 
Error :universeIsType, 
equalitySymmetry, 
promote_hyp, 
equalityTransitivity, 
universeEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
isectEquality, 
isect_memberFormation, 
isect_memberEquality, 
voidEquality, 
independent_functionElimination, 
dependent_functionElimination, 
cumulativity, 
instantiate, 
applyEquality, 
Error :lambdaFormation_alt, 
Error :equalityIsType4
Latex:
\mforall{}[A1,B1,A2,B2:Type].    (per-or(A1;B1)  =  per-or(A2;B2))  supposing  (A1  \mequiv{}  A2  and  B1  \mequiv{}  B2)
Date html generated:
2019_06_20-AM-11_30_35
Last ObjectModification:
2018_10_06-AM-10_00_52
Theory : per!type
Home
Index