Nuprl Lemma : per-value_subtype_base

per-value() ⊆Base


Proof




Definitions occuring in Statement :  per-value: per-value() subtype_rel: A ⊆B base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] per-value: per-value()
Lemmas referenced :  subtype_rel-per-set base_wf has-value_wf_base
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality

Latex:
per-value()  \msubseteq{}r  Base



Date html generated: 2016_05_13-PM-03_54_35
Last ObjectModification: 2015_12_26-AM-10_40_36

Theory : per!type


Home Index