Nuprl Lemma : subtype_rel-per-set

[A:Type]. ∀[B:A ⟶ Type].  (per-set(A;a.B[a]) ⊆A)


Proof




Definitions occuring in Statement :  per-set: per-set(A;a.B[a]) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B per-set: per-set(A;a.B[a]) and: P ∧ Q prop: so_apply: x[s]
Lemmas referenced :  per-set_wf equal-wf-base and_wf equal_wf member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry sqequalRule axiomEquality functionEquality cumulativity universeEquality isect_memberEquality because_Cache pointwiseFunctionality pertypeElimination productElimination productEquality applyEquality dependent_set_memberEquality independent_pairFormation setElimination rename setEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (per-set(A;a.B[a])  \msubseteq{}r  A)



Date html generated: 2016_05_13-PM-03_54_30
Last ObjectModification: 2015_12_26-AM-10_40_45

Theory : per!type


Home Index