Nuprl Lemma : per-set_wf
∀[A:Type]. ∀[B:A ⟶ Type].  (per-set(A;a.B[a]) ∈ Type)
Proof
Definitions occuring in Statement : 
per-set: per-set(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
per-set: per-set(A;a.B[a])
Lemmas referenced : 
equal-wf-base, 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesis, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
sqequalRule, 
pertypeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (per-set(A;a.B[a])  \mmember{}  Type)
Date html generated:
2016_10_21-AM-09_39_40
Last ObjectModification:
2016_07_12-AM-05_01_32
Theory : per!type
Home
Index