Nuprl Lemma : per-set_wf

[A:Type]. ∀[B:A ⟶ Type].  (per-set(A;a.B[a]) ∈ Type)


Proof




Definitions occuring in Statement :  per-set: per-set(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T prop: so_apply: x[s] cand: c∧ B per-set: per-set(A;a.B[a])
Lemmas referenced :  equal-wf-base and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation functionEquality cumulativity hypothesisEquality universeEquality productEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis applyEquality functionExtensionality equalityTransitivity equalitySymmetry productElimination independent_pairFormation dependent_set_memberEquality lambdaEquality setElimination rename setEquality hyp_replacement Error :applyLambdaEquality,  sqequalRule pertypeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (per-set(A;a.B[a])  \mmember{}  Type)



Date html generated: 2016_10_21-AM-09_39_40
Last ObjectModification: 2016_07_12-AM-05_01_32

Theory : per!type


Home Index