Nuprl Lemma : per-value-property

[x:per-value()]. uand(x ∈ Base;(x)↓)


Proof




Definitions occuring in Statement :  per-value: per-value() uand: uand(A;B) has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] uand: uand(A;B) member: t ∈ T has-value: (a)↓ subtype_rel: A ⊆B per-value: per-value() so_lambda: λ2x.t[x] prop: so_apply: x[s] top: Top per-set: per-set(A;a.B[a]) and: P ∧ Q sq_stable: SqStable(P) implies:  Q squash: T
Lemmas referenced :  has-value_wf_base is-exception_wf subtype_rel-per-set base_wf istype-top istype-void sq_stable__has-value per-value_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution axiomSqleEquality hypothesis thin rename isaxiomCases divergentSqle extract_by_obid isectElimination baseClosed hypothesisEquality axiomEquality applyEquality Error :lambdaEquality_alt,  Error :universeIsType,  because_Cache axiomSqEquality Error :inhabitedIsType,  Error :isect_memberEquality_alt,  voidElimination pertypeElimination productElimination equalityTransitivity equalitySymmetry independent_functionElimination imageMemberEquality imageElimination Error :productIsType,  Error :equalityIsType4,  baseApply closedConclusion

Latex:
\mforall{}[x:per-value()].  uand(x  \mmember{}  Base;(x)\mdownarrow{})



Date html generated: 2019_06_20-AM-11_30_27
Last ObjectModification: 2018_10_07-AM-00_52_07

Theory : per!type


Home Index