Nuprl Lemma : per-value-property
∀[x:per-value()]. uand(x ∈ Base;(x)↓)
Proof
Definitions occuring in Statement : 
per-value: per-value(), 
uand: uand(A;B), 
has-value: (a)↓, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uand: uand(A;B), 
member: t ∈ T, 
has-value: (a)↓, 
subtype_rel: A ⊆r B, 
per-value: per-value(), 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
top: Top, 
per-set: per-set(A;a.B[a]), 
and: P ∧ Q, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T
Lemmas referenced : 
has-value_wf_base, 
is-exception_wf, 
subtype_rel-per-set, 
base_wf, 
istype-top, 
istype-void, 
sq_stable__has-value, 
per-value_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
axiomSqleEquality, 
hypothesis, 
thin, 
rename, 
isaxiomCases, 
divergentSqle, 
extract_by_obid, 
isectElimination, 
baseClosed, 
hypothesisEquality, 
axiomEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
Error :universeIsType, 
because_Cache, 
axiomSqEquality, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
voidElimination, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
Error :productIsType, 
Error :equalityIsType4, 
baseApply, 
closedConclusion
Latex:
\mforall{}[x:per-value()].  uand(x  \mmember{}  Base;(x)\mdownarrow{})
Date html generated:
2019_06_20-AM-11_30_27
Last ObjectModification:
2018_10_07-AM-00_52_07
Theory : per!type
Home
Index