Nuprl Lemma : per-value_wf
per-value() ∈ Type
Proof
Definitions occuring in Statement : 
per-value: per-value()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
per-value: per-value()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
per-set_wf, 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality
Latex:
per-value()  \mmember{}  Type
Date html generated:
2016_05_13-PM-03_54_32
Last ObjectModification:
2015_12_26-AM-10_40_37
Theory : per!type
Home
Index