Step * of Lemma per-or-family_wf

[A,B:Type].  (per-or-family(A;B) ∈ per-function(per-value();a.Type))
BY
(Auto
   THEN (Assert per-function(per-value();a.Type) ∈ 𝕌BY
               (BLemma `per-function_wf_type` THEN Auto))
   THEN (DupHyp (-1) THEN Unfold `per-function` -1)
   THEN (PointwiseFunctionalityForEquality' THENW Auto)
   THEN (PointwiseFunctionalityForEquality' THENW Auto)
   THEN ((Unfold `per-function` THEN PerEqCD_member) THENW Auto)
   THEN Reduce 0
   THEN (D THEN Reduce 0)
   THEN Auto) }

1
1. Base
2. A1 Base
3. A1 ∈ Type
4. Base
5. B1 Base
6. B1 ∈ Type
7. per-function(per-value();a.Type) ∈ 𝕌'
8. pertype(λf,g. function-eq(per-value();a.Type;f;g)) ∈ 𝕌'
9. Base
10. Base
11. b ∈ per-value()
⊢ (per-or-family(A;B) a) (per-or-family(A1;B1) b) ∈ Type


Latex:


Latex:
\mforall{}[A,B:Type].    (per-or-family(A;B)  \mmember{}  per-function(per-value();a.Type))


By


Latex:
(Auto
  THEN  (Assert  per-function(per-value();a.Type)  \mmember{}  \mBbbU{}'  BY
                          (BLemma  `per-function\_wf\_type`  THEN  Auto))
  THEN  (DupHyp  (-1)  THEN  Unfold  `per-function`  -1)
  THEN  (PointwiseFunctionalityForEquality'  2  THENW  Auto)
  THEN  (PointwiseFunctionalityForEquality'  1  THENW  Auto)
  THEN  ((Unfold  `per-function`  0  THEN  PerEqCD\_member)  THENW  Auto)
  THEN  Reduce  0
  THEN  (D  0  THEN  Reduce  0)
  THEN  Auto)




Home Index