Nuprl Lemma : per-or-family_wf
∀[A,B:Type].  (per-or-family(A;B) ∈ per-function(per-value();a.Type))
Proof
Definitions occuring in Statement : 
per-value: per-value()
, 
per-or-family: per-or-family(A;B)
, 
per-function: per-function(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-function: per-function(A;a.B[a])
, 
function-eq: function-eq(A;a.B[a];f;g)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
per-or-family: per-or-family(A;B)
, 
uand: uand(A;B)
, 
has-value: (a)↓
, 
top: Top
Lemmas referenced : 
per-function_wf_type, 
per-value_wf, 
equal-wf-base, 
base_wf, 
per-value_subtype_base, 
subtype_base_sq, 
subtype_rel_self, 
equal_wf, 
per-value-property, 
has-value_wf_base, 
is-exception_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
pointwiseFunctionalityForEquality, 
equalityTransitivity, 
equalitySymmetry, 
pertypeMemberEquality, 
sqequalRule, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality, 
applyEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaFormation, 
axiomSqleEquality, 
divergentSqle, 
sqleReflexivity, 
isaxiomCases, 
axiomSqEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[A,B:Type].    (per-or-family(A;B)  \mmember{}  per-function(per-value();a.Type))
Date html generated:
2019_06_20-AM-11_30_30
Last ObjectModification:
2018_08_22-PM-02_04_42
Theory : per!type
Home
Index