Nuprl Lemma : per-or-family_wf

[A,B:Type].  (per-or-family(A;B) ∈ per-function(per-value();a.Type))


Proof




Definitions occuring in Statement :  per-value: per-value() per-or-family: per-or-family(A;B) per-function: per-function(A;a.B[a]) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-function: per-function(A;a.B[a]) function-eq: function-eq(A;a.B[a];f;g) uimplies: supposing a prop: subtype_rel: A ⊆B sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} per-or-family: per-or-family(A;B) uand: uand(A;B) has-value: (a)↓ top: Top
Lemmas referenced :  per-function_wf_type per-value_wf equal-wf-base base_wf per-value_subtype_base subtype_base_sq subtype_rel_self equal_wf per-value-property has-value_wf_base is-exception_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis pointwiseFunctionalityForEquality equalityTransitivity equalitySymmetry pertypeMemberEquality sqequalRule hypothesisEquality isect_memberEquality axiomEquality because_Cache baseApply closedConclusion baseClosed universeEquality applyEquality instantiate cumulativity independent_isectElimination dependent_functionElimination independent_functionElimination lambdaFormation axiomSqleEquality divergentSqle sqleReflexivity isaxiomCases axiomSqEquality voidElimination voidEquality

Latex:
\mforall{}[A,B:Type].    (per-or-family(A;B)  \mmember{}  per-function(per-value();a.Type))



Date html generated: 2019_06_20-AM-11_30_30
Last ObjectModification: 2018_08_22-PM-02_04_42

Theory : per!type


Home Index