Step * 1 2 of Lemma per-type-family_wf


1. Type
2. Type supposing A
3. per-function(A;a.Type) ∈ 𝕌'
⊢ λx.B ∈ per-function(A;a.Type)
BY
((DupHyp (-1) THEN Unfold `per-function` -1) THEN PointwiseFunctionalityForEquality' 2) }

1
.....wf..... 
1. Type
2. Type supposing A
3. per-function(A;a.Type) ∈ 𝕌'
4. pertype(λf,g. function-eq(A;a.Type;f;g)) ∈ 𝕌'
⊢ per-function(A;a.Type) ∈ 𝕌'

2
1. Type
2. Base
3. B1 Base
4. B1 ∈ Type supposing A
5. per-function(A;a.Type) ∈ 𝕌'
6. pertype(λf,g. function-eq(A;a.Type;f;g)) ∈ 𝕌'
⊢ x.B) x.B1) ∈ per-function(A;a.Type)


Latex:


Latex:

1.  A  :  Type
2.  B  :  Type  supposing  A
3.  per-function(A;a.Type)  \mmember{}  \mBbbU{}'
\mvdash{}  \mlambda{}x.B  \mmember{}  per-function(A;a.Type)


By


Latex:
((DupHyp  (-1)  THEN  Unfold  `per-function`  -1)  THEN  PointwiseFunctionalityForEquality'  2)




Home Index