Nuprl Lemma : per-void_wf

per-void() ∈ Type


Proof




Definitions occuring in Statement :  per-void: per-void() member: t ∈ T universe: Type
Definitions unfolded in proof :  per-void: per-void() member: t ∈ T uall: [x:A]. B[x] prop:
Lemmas referenced :  sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed hypothesis pertypeEquality

Latex:
per-void()  \mmember{}  Type



Date html generated: 2016_05_13-PM-03_53_24
Last ObjectModification: 2016_01_14-PM-07_16_00

Theory : per!type


Home Index