Nuprl Lemma : per-void_wf
per-void() ∈ Type
Proof
Definitions occuring in Statement : 
per-void: per-void()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
per-void: per-void()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesis, 
pertypeEquality
Latex:
per-void()  \mmember{}  Type
Date html generated:
2016_05_13-PM-03_53_24
Last ObjectModification:
2016_01_14-PM-07_16_00
Theory : per!type
Home
Index