Step * 1 of Lemma rec-value-evalall


1. Base
2. (evalall(x))↓
⊢ x ∈ rec-value()
BY
(Unfold `evalall` (-1)
   THEN Compactness (-1)
   THEN Unhide
   THEN Thin (-3)
   THEN MoveToConcl 1
   THEN NatInd (-1)
   THEN Reduce 0
   THEN Strictness
   THEN Auto
   THEN BotDiv) }

1
1. : ℤ
2. 0 < j
3. ∀x:Base
     ((λevalall,t. eval in
                   if is pair then let a,b 
                                       in eval a' evalall in
                                          eval b' evalall in
                                            <a', b'> otherwise if is inl then eval evalall outl(x) in
                                                                                inl y
                                                               else if is inr then eval evalall outr(x) in
                                                                                     inr 
                                                                    else x^j 
       ⊥ 
       x)↓
      (x ∈ rec-value()))
4. Base@i
5. evalall,t. eval in
                if is pair then let a,b 
                                    in eval a' evalall in
                                       eval b' evalall in
                                         <a', b'> otherwise if is inl then eval evalall outl(x) in
                                                                             inl y
                                                            else if is inr then eval evalall outr(x) in
                                                                                  inr 
                                                                 else x^j 
    ⊥ 
    x)↓
⊢ x ∈ rec-value()


Latex:


Latex:

1.  x  :  Base
2.  (evalall(x))\mdownarrow{}
\mvdash{}  x  \mmember{}  rec-value()


By


Latex:
(Unfold  `evalall`  (-1)
  THEN  Compactness  (-1)
  THEN  Unhide
  THEN  Thin  (-3)
  THEN  MoveToConcl  1
  THEN  NatInd  (-1)
  THEN  Reduce  0
  THEN  Strictness
  THEN  Auto
  THEN  BotDiv)




Home Index